5,083 research outputs found

    The Certification of ATLAS Thin Gap Chambers Produced in Israel and China

    Full text link
    Thin gap chambers (TGCs) are used for the muon trigger system in the forward region of the LHC experiment ATLAS. A TGC consists of a plane of closely spaced wires maintained at positive high voltage, sandwiched between resistive grounded cathode planes with an anode wire to cathode plane gap distance smaller than the wire-to-wire spacing. The TGCs are expected to provide a trigger signal within 25 ns of the bunch spacing of the LHC accelerator, with an efficiency exceeding 95%, while exposed to an effective photon and neutron background ranging from 30 to 500 Hz/cm2. About 2,500 out of the 3,600 ATLAS TGCs are being produced at the Weizmann institute in Israel, and in Shandong University in China. Once installed in the ATLAS detector the TGCs will be inaccessible. A vigorous production quality control program is therefore implemented at the production sites. Furthermore, after chamber completion, a thorough program of quality assurance is implemented to ensure the efficient performance of the chambers during more than ten years of operation in the LHC high rate environment. This program consists of a detailed mapping of the detectors response using cosmic rays, as well as checking the chambers behavior using a high rate radiation source. An aging test performed on five chambers in a serial gas connection is presented. Finally the results of the chambers certification tests performed at CERN before the installation in ATLAS are described.Comment: Presented at 2004 IEEE Nuclear Science Symposium 2004, Rome, Oct 200

    The Complete Chloroplast Genome of 17 Individuals of Pest Species Jacobaea vulgaris: SNPs, Microsatellites and Barcoding Markers for Population and Phylogenetic Studies

    Get PDF
    Invasive individuals from the pest species Jacobaea vulgaris show different allocation patterns in defence and growth compared with native individuals. To examine if these changes are caused by fast evolution, it is necessary to identify native source populations and compare these with invasive populations. For this purpose, we are in need of intraspecific polymorphic markers. We therefore sequenced the complete chloroplast genomes of 12 native and 5 invasive individuals of J. vulgaris with next generation sequencing and discovered single-nucleotide polymorphisms (SNPs) and microsatellites. This is the first study in which the chloroplast genome of that many individuals within a single species was sequenced. Thirty-two SNPs and 34 microsatellite regions were found. For none of the individuals, differences were found between the inverted repeats. Furthermore, being the first chloroplast genome sequenced in the Senecioneae clade, we compared it with four other members of the Asteraceae family to identify new regions for phylogentic inference within this clade and also within the Asteraceae family. Five markers (ndhC-trnV, ndhC-atpE, rps18-rpl20, clpP and psbM-trnD) contained parsimony-informative characters higher than 2%. Finally, we compared two procedures of preparing chloroplast DNA for next generation sequencing

    The Cosmic Ray Hodoscopes for Testing Thin Gap Chambers at the Technion and Tel Aviv University

    Full text link
    Thin gap chambers (TGCs) are built for the muon trigger chambers in the endcap region of the LHC experiment ATLAS. More than 2500 ATLAS TGCs are being produced at the Weizmann institute in Israel, and in Shandong University in China. Detailed testing of these chambers is performed at the Technion and at the Tel-Aviv University. Two cosmic ray hodoscopes for testing the operation of these detectors were built in Israel. In these hodoscopes the response of the chambers to energetic cosmic ray muons is recorded and analyzed. The hodoscopes measure the exact time and space location of the cosmic ray hit and read out the chambers which are being tested to verify that they produce a corresponding signal within the required time interval. The cosmic ray hodoscopes built at the Technion and at the Tel Aviv University for the test of ATLAS TGCs are described. The mechanical structure, readout electronics, data acquisition and operating scheme are presented. Typical TGC test results are presented and discussed

    Оптимизация процессов выработки электроэнергии комбинированной электроэнергетической системой

    Get PDF
    Синтезована комбінована система електропостачання хімічного підприємства, що включає джерела об'єднаної енергосистеми, міні-ГЕС та турбогенератор, який працює на теплоті, що виділяється в результаті технологічного процесу. Запропоновано математичну модель оптимізації вироблення електроенергії синтезованої енергосистеми. Показано, що використання комбінованого електропостачання забезпечує зменшення генерованої потужності в об'єднаній енергосистемі України, що призводить до пропорційного зменшення викидів СО₂ в атмосферу.Energy supply of chemical objects is considered. It is shown that use of own energy sources by this energy consumption group is not widely applied. In the article it is displayed that the heat produced during ammonia synthesis is not applied for effective work, moreover, additional energy is wasted to cool down the vapor. Thus, energy saving effect can be reached through use of the heat given out during transferring this energy to electricity; and for intake pumps supply energy of mini HES built on the nearby river can be used. A combined energy supply system for chemical plant was suggested; it composes from units of Unified Power System, mini-HES and turbine-generating set which applies the heat produced during technological process. Mathematical model for optimization of electricity production by the combined power system was proposed. It is shown that combined energy production contributes diminishing generated capacity in the UPS of Ukraine and CO₂ emissions ejected to atmosphere proportionally.Синтезирована комбинированная система электроснабжения химического предприятия, включающая источники объединенной энергосистемы, мини-ГЭС и турбогенератор, работающий на теплоте, выделяющейся в результате технологического процесса. Предложена математическая модель оптимизации выработка электроэнергии синтезированной энергосистемы. Показано, что использование комбинированного электроснабжения обеспечивает уменьшение генерируемой мощности в объединенной энергосистеме Украины, что приводит к пропорциональному уменьшению выбросов СО₂ в атмосферу

    Implementation of genomics in medical practice to deliver precision medicine for an Asian population

    Get PDF
    Whilst the underlying principles of precision medicine are comparable across the globe, genomic references, health practices, costs and discrimination policies differ in Asian settings compared to the reported initiatives involving European-derived populations. We have addressed these variables by developing an evolving reference base of genomic and phenotypic data and a framework to return medically significant variants to consenting research participants applicable for the Asian context. Targeting 10,000 participants, over 2000 Singaporeans, with no known pre-existing health conditions, have consented to an extensive clinical health screen, family health history collection, genome sequencing and ongoing follow-up. Genomic variants in a subset of genes associated with Mendelian disorders and drug responses are analysed using an in-house bioinformatics pipeline. A multidisciplinary team reviews the classification of variants and a research report is generated. Medically significant variants are returned to consenting participants through a bespoke return-of-result genomics clinic. Variant validation and subsequent clinical referral are advised as appropriate. The design and implementation of this flexible learning framework enables a cohort of detailed phenotyping and genotyping of healthy Singaporeans to be established and the frequency of disease-causing variants in this population to be determined. Our findings will contribute to international precision medicine initiatives, bridging gaps with ethnic-specific data and insights from this understudied population

    High dietary folate in pregnant mice leads to pseudo-MTHFR deficiency and altered methyl metabolism, with embryonic growth delay and short-term memory impairment in offspring

    Get PDF
    Methylenetetrahydrofolate reductase (MTHFR) generates methyltetrahydrofolate for methylation reactions. Severe MTHFR deficiency results in homocystinuria and neurologic impairment. Mild MTHFR deficiency (677C > T polymorphism) increases risk for complex traits, including neuropsychiatric disorders. Although low dietary folate impacts brain development, recent concerns have focused on high folate intake following food fortification and increased vitamin use. Our goal was to determine whether high dietary folate during pregnancy affects brain development in murine offspring. Female mice were placed on control diet (CD) or folic acid-supplemented diet (FASD) throughout mating, pregnancy and lactation. Three-week-old male pups were evaluated for motor and cognitive function. Tissues from E17.5 embryos, pups and dams were collected for choline/methyl metabolite measurements, immunoblotting or gene expression of relevant enzymes. Brains were examined for morphology of hippocampus and cortex. Pups of FASD mothers displayed short-term memory impairment, decreased hippocampal size and decreased thickness of the dentate gyrus. MTHFR protein levels were reduced in FASD pup livers, with lower concentrations of phosphocholine and glycerophosphocholine in liver and hippocampus, respectively. FASD pup brains showed evidence of altered acetylcholine availability and Dnmt3a mRNA was reduced in cortex and hippocampus. E17.5 embryos and placentas from FASD dams were smaller. MTHFR protein and mRNA were reduced in embryonic liver, with lower concentrations of choline, betaine and phosphocholine. Embryonic brain displayed altered development of cortical layers. In summary, high folate intake during pregnancy leads to pseudo-MTHFR deficiency, disturbed choline/methyl metabolism, embryonic growth delay and memory impairment in offspring. These findings highlight the unintended negative consequences of supplemental folic acid

    Evidence for directional selection at a novel major histocompatibility class I marker in wild common frogs (Rana temporaria) exposed to a viral pathogen (Ranavirus).

    Get PDF
    (c) 2009 Teacher et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Whilst the Major Histocompatibility Complex (MHC) is well characterized in the anuran Xenopus, this region has not previously been studied in another popular model species, the common frog (Rana temporaria). Nor, to date, have there been any studies of MHC in wild amphibian host-pathogen systems. We characterise an MHC class I locus in the common frog, and present primers to amplify both the whole region, and specifically the antigen binding region. As no more than two expressed haplotypes were found in over 400 clones from 66 individuals, it is likely that there is a single class I locus in this species. This finding is consistent with the single class I locus in Xenopus, but contrasts with the multiple loci identified in axolotls, providing evidence that the diversification of MHC class I into multiple loci likely occurred after the Caudata/Anura divergence (approximately 350 million years ago) but before the Ranidae/Pipidae divergence (approximately 230 mya). We use this locus to compare wild populations of common frogs that have been infected with a viral pathogen (Ranavirus) with those that have no history of infection. We demonstrate that certain MHC supertypes are associated with infection status (even after accounting for shared ancestry), and that the diseased populations have more similar supertype frequencies (lower F(ST)) than the uninfected. These patterns were not seen in a suite of putatively neutral microsatellite loci. We interpret this pattern at the MHC locus to indicate that the disease has imposed selection for particular haplotypes, and hence that common frogs may be adapting to the presence of Ranavirus, which currently kills tens of thousands of amphibians in the UK each year

    ERCC1 expression and RAD51B activity correlate with cell cycle response to platinum drug treatment not DNA repair

    Get PDF
    Background: The H69CIS200 and H69OX400 cell lines are novel models of low-level platinum-drug resistance. Resistance was not associated with increased cellular glutathione or decreased accumulation of platinum, rather the resistant cell lines have a cell cycle alteration allowing them to rapidly proliferate post drug treatment. Results: A decrease in ERCC1 protein expression and an increase in RAD51B foci activity was observed in association with the platinum induced cell cycle arrest but these changes did not correlate with resistance or altered DNA repair capacity. The H69 cells and resistant cell lines have a p53 mutation and consequently decrease expression of p21 in response to platinum drug treatment, promoting progression of the cell cycle instead of increasing p21 to maintain the arrest. Conclusion: Decreased ERCC1 protein and increased RAD51B foci may in part be mediating the maintenance of the cell cycle arrest in the sensitive cells. Resistance in the H69CIS200 and H69OX400 cells may therefore involve the regulation of ERCC1 and RAD51B independent of their roles in DNA repair. The novel mechanism of platinum resistance in the H69CIS200 and H69OX400 cells demonstrates the multifactorial nature of platinum resistance which can occur independently of alterations in DNA repair capacity and changes in ERCC1
    corecore